SURVEY OFFICE

BPECTRA

GEOSPATIAL

Using Spreadsheets, Selection Sets, and COGO Controls

About this tutorial

In this tutorial, you will view spreadsheets, create a selection set, and work with COGO controls.

Note: If you need additional help at any time you are using the software, press F1 to display the online help.

Step 1. Open the project

For this tutorial, you will use the project file Using Spreadsheets.vce. GNSS, total station, and level data has already been imported into the project, and GNSS baselines have been processed.

Note: The downloaded UsingSpreadsheets folder contains this PDF file and the Using Spreadsheets.vce project file.

1. In SO, select File > Open.
2. In the Open File dialog, browse to ..|UsingSpreadsheets\Using Spreadsheets.vce and click Open.

The project opens in the Survey Office window.

The project file is read-only. You can perform the tutorial steps without saving the project file. However, if you are interrupted while performing the tutorial, you can save it with a new name by selecting File > Save Project As. Then, you can re-open the project to continue the tutorial at a later time.

You are now ready to explore some of Survey Office's features.

Step 2. View spreadsheets

In this step, you will view two spreadsheets available in Survey Office:

- Occupation Spreadsheet
- Point Spreadsheet

You can customize what is displayed in spreadsheets and how it is displayed, as shown in the following steps.

1. In the Quick Access toolbar (located at the top of the SO window), select Project Settings.
2. In the navigation (left) pane in the Project Settings dialog, select View > Points Spreadsheet.

A list of the names of columns available for the Points spreadsheet display in the table. Each column name is followed by an indicator of whether the column should be included in the spreadsheet.

You can click on any of the Show/Hide indicators to change the selection.
In the navigation (left) pane in the Project Settings dialog, you can select other spreadsheets in the View menu to view and change the Show/Hide column settings for them as well. For this tutorial, there is no need to make changes.
3. Click Cancel to close the Project Settings dialog.

Next you will see how to customize a spreadsheet by sorting the rows in it.
4. In the Survey Office ribbon, select Home > Data $>$ Points.

The Point Spreadsheet displays.

'lan View [My Filter] \mathbf{x}	Point Spreadsheet	x		
		Points		
Point ID	\triangle	Northing \quad \%	Easting $\quad \nabla$	Elevation
3		367522.310	947543.066	1667.§
5		367651.438	947306.474	1673.5
B 412		?	$?$	1636.
filter		367373.761	946961.681	1662.:
flange		?	$?$	1649.s
frey		367794.848	946313.793	1674.7
fsi		367662.441	947578.608	1680.*
HANNA		366983.780	946136.640	1672.
P041		373256.924	940529.009	1745.9
PLTC		399270.154	980323.935	1522.6
- incoun	-	267กAこ Dac	natcancon	1556:

You can sort the rows in the spreadsheet based on the column heading you select. By default, the rows are sorted in ascending alphabetical order based on the Point ID.
5. Click the Elevation column heading to sort the rows based on the ascending and descending elevation of the points.

Note that the Sort icon indicates whether the sort is in ascending (the arrow points up) or descending (the arrow points down) order.

You can filter the displayed rows by clicking the filter icon for a column and selecting the appropriate filter. The default filter is All.
6. Click the Feature Code filter icon ∇ and select NonBlanks in the context menu.

\triangle	Feature Code	∇
i22.039	All	
i36.164	Custom	
	Blanks	
149.978	NonBlanks	
i55.340	SCD	\ldots
i62.346	SCD	\ldots
[64.883		\ldots
;65.111		\ldots
¡66.298		\ldots

Only points with feature codes assigned are displayed in the spreadsheet.

∇	Feature Code	T
40 SCP		\ldots
46 SCP		\ldots
36 SCP		\ldots
18 SCP		\ldots
12 SCP		\square
17 SCD		\ldots
31 SCP		\ldots

You can further customize your spreadsheet as follows:

- Resize the width of any column by placing the cursor on the column border in the heading row and dragging it left or right.
- Move a column to a new location using "drag-and-drop."
- Move the spreadsheet tab to a new location. Simply click on the tab label and drag it downward off the tab bar before releasing. Then select a location option in the context menu.

Try right-clicking the tab label and selecting New Vertical Tab Group to display the tab vertically in the window.

Use the same procedure to move the tab back.
Any content displayed in blue in the spreadsheet can be edited. For example, you can type in a new Point ID, or you can edit a Feature Code directly in the column or by clicking the browse button \square to display the Feature Code Editor dialog.

You can copy rows from a spreadsheet into a Microsoft Excel spreadsheet. Just select the rows you want to copy, press Ctrl+C to copy, select a cell in the Excel spreadsheet, and press CtrI+V to paste. Although the header row cannot be selected, it is always copied and pasted into the spreadsheet along with the rows you select.
You can display the Properties pane for any point by selecting the row, rightclicking, and selecting Properties in the context menu.

Custom filters allow you to select the criteria for filtering data displayed in a spreadsheet. In the following example, you will select to view only the points that did not use the R8 GNSS/SPS88x Internal antenna type.
7. Select Home > Data > Occupation.

The Occupation Spreadsheet displays.

8. Click the Ant. Type filter icon ∇ and select Custom in the context menu.

The Custom Filter dialog displays.

9. In the Ant. Type drop-down list, select Does not equal to.
10. In the second (operand) drop-down list, select R8 GNSS/SPS88x Internal. Then click OK.

The spreadsheet refreshes based on your custom filter. Only points that did not use the $R 8$ GNSS/SPS88x Internal antenna type display.

Occupations		Ant. Method ∇	Ant. Manufacturer	
File Name ∇	Ant. Height ∇	Ant. Type \mathbf{T}		
p0411650.06	0.008	Bottom of ante	Trimble	Choke Ring
pltc1650.060	0.000	Bottom of ante	Trimble	Micro-center
tmgo1650.06	0.000	Bottom of ante	Ashtech	700936A_M

You are done looking at spreadsheets. Next, you will take a look at how to create and use selection sets.

Step 3. Create a selection set

If you need to select the same objects over and over, it can be frustrating to manually make your selections and it is easy to make mistakes. Instead, you can use the Selection Explorer to create reusable selection sets.

1. Click on the Plan View and use your mouse wheel to zoom in. Press the mouse wheel and move the mouse to center the points as shown here.

2. Select Home $>$ Selection $>$ Selection Explorer to display the Selection Explorer.

The Selection Explorer includes a Selection Sets list (1 below) that includes all of the selection sets in your project. Located beneath it is a Selection Palette list (2 below) that includes all of the member objects included in the currently selected selection set(s). If <Selection Snapshot> is selected in the Selection Sets list, whatever is selected in the graphic view is included in the Selection Palette list, allowing you to save your selection as a new selection set or add it to an existing selection set. Since you have not yet made a selection, nothing is displaying in the Selection Palette with <Selection Snapshot> selected. The tool bar includes icons for commands you can use to create and modify selection sets as necessary.

Selection Sets tool bar:

1 - Remove selection sets without deleting contained objects - Click this icon to remove any selected selection set(s) from the project without removing their member objects.

2 - Add the selection to selection sets - Click this icon to display the Add To dialog, which allows you to specify selection sets to which you want to add any currently selected objects in the project.

3 - Subtract the selection from selection sets - Click this icon to display the Subtract From dialog, which allows you to specify selection sets from which you want to remove any currently selected objects in the project.

Selection Palette tool bar:

1 - Create a selection set (save entire selection palette) - Click this icon to display the Save As dialog, which allows you to create a new selection set containing all of the objects displayed in the Selection Palette list.

2 - Refresh the selection snapshot - Click this icon, if active, to refresh the <Selection Snapshot> set displayed in the the Selection Palette list.

3 - Add objects to the selection palette - Click this icon to add to the Selection Palette list any selected objects in the project.

4 - Subtract objects from the selection palette - Click this icon to remove from the Selection Palette list any selected objects in the project.
3. In the Plan View, use your cursor to draw a selection box around the group of objects you want to include in your selection set, as shown here.

Selection rules are as follows:

- Click and drag from left to right to select only the objects that are included in the selection box (for example, points).
- Click and drag from right to left to select the objects that are included in the selection box (for example, points) along with any objects that cross the selection box (for example, observations, baselines, vectors, and mean angles).
- Use Ctrl + click or Ctrl + drag to add a single object or multiple objects to the selection set.
- Use Shift + Ctrl + click or Shift + Ctrl + drag to remove a single object or multiple objects from the selection set.

Your selections display in the Selection Explorer in the <Selection Snapshot> objects list.

Q Selection Explorer			- $\quad 1$	\times
- \% 0				
Selection Sets			Objects	\wedge
O <Selection Snapshot>				
session 1			6	
session 2			6	
[01241650.dat			2	
[01241651.dat			2	
-01241652a.dat			2	
[01241653.dat			2	
[01241654.dat			2	\checkmark
$\otimes 10 \mathrm{*}$				
<Selection Snapshot>			275/275	
,	Name	Type		-
∇	t-x-t (M20)	Mean Angle		ミ
∇	t-u-t (M18)	Mean Angle		
∇	y-filter-y (M16)	Mean Angle		

4. On the Selection Explorer toolbar, click the Create a selection set (save entire selection palette) icon to display the Save Selection Set As dialog
5. In the Save <Selection Snapshot> As dialog, enter a name for your selection set: Tutorial Selection. Then click OK

Save<Selection Snapshot>As...	
Selection name:	
Tutorial Selection	
Objects in this selection: 275	OK Cancel

Your new selection set is added to the Selection Sets list. To view the objects contained in your selection set, simply select the set in the Selection Sets list.

You can view properties for any object in the selection set by selecting it in the list, right-clicking, and selecting Properties in the context menu. To select multiple objects in the list, use Ctrl + click or Shift + click. Selecting multiple objects can be particularly useful if you want to specify a property (for example, a feature code) for all of them at the same time.

To select the objects in multiple selection sets, press the Ctrl key and make your selections in the Selection Sets list.
6. Close the Selection Explorer pane.

Additional notes:

- Selection sets are created automatically when you import data containing scan station labels. See "Work with Scan Station Labels and Selection Sets" in the SO Help for more information.
- The selection sets you create, and those created from some types of imported files, also appear in the View Filter Manager. They can be used as a starting point in creating view filters. See "View Filter Manager Options" in the SO Help for more information..

You are done working with selection sets. Next, you will take a look at some useful COGO controls.

Step 4. Work with COGO controls

COGO (COordinate GeOmetry) controls are the boxes in various commands that help you calculate angles, bearings, coordinates, distances, elevations, and offsets in your project. They enable you to enter data in a variety of ways, including:

- Typing values and point IDs in the box
- Picking points in graphic views
- Right-clicking in graphic views and selecting additional snap and COGO options from the context menu

COGO controls provide this flexibility so that you have many ways in which you can enter data within a single command, rather than forcing you to work through multiple commands.

COGO snap commands use geometric calculations to help you specify coordinates more easily and accurately. Snap commands can calculate a snap point by using existing geometry or by using parameters that you enter. Snap commands are available any time you are required to enter a coordinate. Simply right-click to see the options.

In the following procedure, you will create four new points in your project (1, 2, 6, and 7) using the various COGO controls and snap commands available in Survey Office. However, before you create new points, you should verify that snap mode options are set correctly.

1. Click the Snap button on the status bar in the bottom of the Survey Office window.

The Running Snap Mode Options dialog displays.

Running Snap Mode Options		
Object Snaps	Ortho Snaps	
\triangle Point		Snap Mode Descr If a point object is i
\checkmark End point		
\square Midpoint		If a point object is i aperture, the coord will be used.
\square Intersection point		
Perpendic	lar point	
Center poin		

This dialog allows you to specify snap mode options. The description for each option is displayed in the dialog.

In this procedure you will be using snap commands to select points. To ensure you are selecting a point and not a coordinate near a point, you will deselect the Free mode (if it is selected).

2. In the Running Snap Mode Options dialog, do the following:
a. Verify the Point mode check box is checked.
b. Uncheck the Free mode check box.
c. Click OK.
3. Create point 1 as follows:
a. In the SO ribbon, select CAD > Points > Create Point.

The Create Point pane displays.

b. Ensure the Point ID field displays 1, the Feature code field is blank, and the Coordinate type field displays Grid.
c. Right-click in the Northing field and select Bearing Distance.

The Bearing Distance pane displays. These controls enable you to calculate a point based on a beginning point, a bearing, and a distance. The zero (0) bearing is north and bearings are measured clockwise. No elevation (Z value) is set using this option.

Reference point:
0
Bearing:

Distance:

Note: For this tutorial, you will be entering bearing values. However, if you prefer, you can enter azimuth values. In the following steps, instead of entering a bearing value of S374456E you could enter a north azimuth value of 1421504 (142 ${ }^{\circ} 15^{\prime}$ 04").
d. Click in the Reference Point field, then click on point 5 in the Plan View.

The coordinate for point 5 displays in the field. As an alternative, you could just type 5 in the field.
e. In the Bearing field, enter s374456e.

There is no need to enter capital letters for South and East.
f. In the Distance field, enter 290.91sft.

Note that the value specifies the distance unit sft (US survey foot). This is required if a value you want to enter uses a distance unit that is different than the unit specified in the Project Settings dialog (meters).
g. Click OK.

The coordinates for the new point 1 display in the Create Point pane.

There is no need to enter an Elevation or Height value.
h. Click the Add button.

The new point 1 displays in the Plan View. The Create Point pane has been cleared so you can create another new point.

4. Create point 2 as follows:
a. In the Create Point pane, ensure the Point ID field displays 2.
b. Right-click in the Northing field and select Bearing Distance.

The Bearing Distance pane displays.
c. In the Reference Point field, enter 3.

The point ID automatically converts to a coordinate.
d. In the Bearing field, enter n180508e.
e. In the Distance field, enter 322.91sft.

Distance:
$|-4| 322.91 \mid$
f. Click OK.

The coordinates for the new point 2 display in the Create Point pane.
g. Click the Add button.

The new point 2 is displayed in the Plan View.

You are now ready to create a new point 6, which will be located midway between points 1 and 2.
5. Create point 6 as follows:
a. In the Create Point pane, enter 6 in the Point ID field.
b. Right-click in the Northing field and select Middle of Point to Point.

The Middle of Point to Point pane displays. These controls allow you to calculate a location midway between two points.

c. In the From point field, enter 1.
d. In the To point field, enter 2.
e. Click OK.

The coordinates for the new point 6 display in the Create Point pane.
f. Click the Add button.

The new point 6 is displayed in the Plan View.

Next you will create a new point 7. This point will be located in line with points 3 and $6,5^{\circ}$ south of the 5 -to-fsi line, as shown in the following image.

6. Create point 7 as follows:
a. In the Create Point pane, ensure 7 displays in the Point ID field.
b. Right-click in the Northing field and select Bearing Bearing.

The Bearing Bearing pane displays. These controls allow you to calculate the intersection of two bearings defined by a first point and second point.

Reference point 1 :
\bullet
Bearing 1:

Reference point 2:
\bullet
Bearing 2:
L

c. Click in the Reference point 1 field and then select point 5 in the Plan View.

The cursor automatically moves to the Bearing 1 field.
d. Select point fsi in the Plan View to define the bearing.

The cursor automatically moves to the Reference point 2 field.
e. Click back in the Bearing 1 field and type +5 after the bearing value.

This adds 50 to the bearing as soon as you click in a different field.

f. Click in the Reference point 2 field and then select point 3 in the Plan View.

The cursor automatically moves to the Bearing 2 field.
g. Select point 6 in the Plan View.

The coordinates for the new point 7 display in the Create Point pane.

h. Click the Add button.

The new point 7 displays in the Plan View.

You can now reselect the Free snap mode option in case you need it turned on for other projects.

You are done working with COGO controls. Feel free at this time to continue exploring the Survey Office software. Press F1 at any time to view the associated online Help.

This completes the tutorial.

